Чем полезен азот для организма

Азот – основной компонент воздуха

Азот – газ без цвета, вкуса и запаха. Один из самых распространенных элементов на Земле и является основным компонентом воздуха (примерно 78% от его объема). Соответственно, азот является химическим элементом, жизненно необходимым для существования растений и животных.

Полезные свойства азота в организме человека

nitrogenАзот входит в состав белков (где он по массе занимает до 18%), также входит с состав: аминокислот, нуклеопротеидов, гемоглобина и нуклеиновых кислот, некоторых гормонов и медиаторов, и др. В составе живых клеток азот занимает 4-е место после водорода, углерода и кислорода.

Сам по себе азот не обладает какой-либо биологической ролью. Его важная роль заключается в присутствии в составе различных биологических соединений. Например, в организме человека азот в составе аминокислот: образует белки, в составе гемоглобина участвует в транспортировке кислорода по всему организму, а в составе нуклеотидов входит в РНК и ДНК.

Поскольку некоторые гормоны также являются производными аминокислот, то азот входит и в их состав. Такими гормонами являются: инсулин, адреналин, тироксин, глюкагон и др. Нейромедиатор (ацетилхолин), с помощью которых нервные клетки передают импульсы друг другу, также содержит в своем составе атом азота.

Азотистые соединения используют и в составе лекарственных средств. Так, к примеру, оксид азота и препараты, содержащие его (например, нитроглицерин – лекарственный препарат для снижения давления) воздействуют расслабляюще на гладкую мускулатуру, что позволяет им лучше расширяться, и это приводит к снижению кровяного давления.

Дефицит азота в организме человека

Дефицит чистого азота в организме человека невозможен, поскольку он ему не нужен в чистом виде. При неправильном питании у человека можно наблюдать разве только дефицит азотосодержащих соединений. И наиболее возможный подобный вариант — это дефицит аминокислот и белков. Такое наблюдается у людей, придерживающихся строгих вегетарианских диет или при заболеваниях, связанных с нарушением обмена веществ. В этом случае, можно наблюдать следующие симптомы: снижение иммунитета, депрессии, сонливость и нехватка сил, мышечная дистрофия, кожные проблемы и т.д. У детей нехватка аминокислот приводит к отставанию в умственном и физическом развитии.

Избыток азота в организме человека

Чистый азот, точно также, не представляет для человека опасность, ее представляют только азотистые соединения. Самыми опасными из них являются нитриты и нитраты. Нитриты в пищевой промышленности используются в качестве консервантов, а нитраты используются в сельском хозяйстве в качестве удобрений. В этом случае, они могут накапливаться в организме и приводить к таким неприятностям, как: ослабление иммунитета, аллергические реакции, изменение pH и закисление организма, воспалительные процессы, вплоть до появления раковых образований.

Источники азота

Человек, как и подавляющее большинство других живых существ, не способен усваивать азот в чистом виде, даже не смотря на то, что он составляет почти весь объем вдыхаемого воздуха. Поэтому, в наш организм он поступает, в основном, в связанном виде в составе растительных и животных белков, аминокислот, пуриновых соединений, нуклеотидов и т.д. Вот почему важно придерживаться разнообразного и сбалансированного питания, которое кроме углеводов включает белки, аминокислоты и жиры растительного и животного происхождения.

Источник

natural history mini

book scienceforum mini

2003 image001

Znak natc konkurs

diplom ruk big

Spivak

image 2003 5 600

image 2003 4 200

БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ АЗОТА ДЛЯ ЖИВЫХ ОРГАНИЗМОВ

Азот является элементом, необходимым для существования животных и растений, он входит в состав белков (16—18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла, гемоглобина и др. В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9•10 11 т. Сине-зеленые водоросли усваивают газообразный азот из атмосферного воздуха. Растения добывают азот из почвы в виде растворимых нитратов и соединений аммиака.

Физиологическая роль азота в организме ассоциируется, прежде всего, с белками и аминокислотами, их метаболизмом, участием в жизненно-важных процессах и влиянием на эти процессы. Аминокислоты являются исходными соединениями при биосинтезе гормонов, витаминов, медиаторов, пигментов, пуриновых и пиримидиновых оснований и т.д. Белки в пересчете на сухой вес составляют 44% от массы тела.

Изменения в содержании белков и аминокислот, расстройства их метаболизма могут быть вызваны различными причинами. Среди этих причин – их недостаточное (или избыточное) поступление, нарушение переваривания и всасывания белка в желудочно-кишечном тракте, расстройство процессов экскреции азота и его соединений. Интегральным показателем состояния белкового обмена является азотистый баланс, т.е. разница между количествами азота, поступающего извне и выводимого из организма за сутки. Сдвиги в обмене белков сопровождаются разнообразными клиническими проявлениями. Известны многочисленные аминоацидопатии – последствия нарушения промежуточного обмена аминокислот (фенинилаланина, лейцина, валина и др.).

В последние годы оксид азота (NO) воспринимается как один из важнейших иммунотропных медиаторов. NO синтезируется из аминокислоты L-аргинина в присутствии фермента NO-синтетазы. Главным источником и местом образования NO в организме является эндотелий, общая масса которого в теле человека достигает 1,5 кг.

Функции оксида азота в организме весьма многообразны. NO участвует в поддержании системной и локальной гемодинамики, способствует снижению повышенного тонуса гладкой мускулатуры сосудов и обеспечивает поддержание нормального уровня артериального давления. NO выступает в роли нейротрансмиттера в желудочно-кишечном тракте, мочевыводящей и половой системе, активируя цГМФ. При иммунном ответе NO является стимулятором фагоцитоза и киллинга внутриклеточных паразитов. При сепсисе, под влиянием цитокинов, происходит высвобождение NO в больших количествах, что способствует развитию септического шока. Оксид азота играет важнейшую роль медиатора, в патогенезе бронхиальной астмы, хронического гломерулонефрита, туберкулеза, рассеянного склероза, болезни Крона, различных опухолей, а также СПИДа.

Благодаря способности NO инактивировать Fe-содержащие ферменты, происходит гибель внутриклеточных микроорганизмов, жизнедеятельность которых зависит от присутствия железа и других биоэлементов.

Романенко Е.С., Дергунова Е.В., Францева Н.Н. Информатизация химии в высших учебных заведениях // Вестник АПК Ставрополья. 2012. № 2 (6). С. 8-10.

Шипуля А.Н., Безгина Ю.А., Волосова Е.В., Пашкова Е.В. Курс лекций по органической химии : Учебное пособие / Ставрополь, 2014.

Читайте также:  Отмененный звонок в telegram что значит

Волосова Е.В., Безгина Ю.А., Пашкова Е.В., Шипуля А.Н. Исследование оптическими методами биоматериалов с химически иммобилизованными в их структуру ферментами класса протеаз / В сборнике: Применение современных ресурсосберегающих инновационных технологий в АПК 2016. С. 74-75.

Шипуля А.Н., Безгина Ю.А., Волосова Е.В., Пашкова Е.В. Химия : рабочая тетрадь / ФГБОУ ВО «Ставропольский государственный аграрный университет». Ставрополь, 2016.

Брыкалов А.В., Некольченко Л.А., Романенко Е.С., Кривошеев Н.В., Шипуля А.Н., Безгина Ю.А., Плющ Е.В., Глазунова Н.Н., Горохова С.Г., Головкина Е.М. Совершенствование методики обучения и активизации учебно-исследовательской работы студентов на кафедре химии и защиты растений / В сборнике: Информационные и коммуникационные технологии и активизация учебного процесса в вузе Ставрополь, 2005. С. 20-22.

Брыкалов А.В., Плющ Е.В. Синтез и исследование сорбентов с ионообменными и гидрофобными свойствами // Успехи современного естествознания. 2004. № 7. С. 42.

Романенко Е.С., Дергунова Е.В., Волосова Е.В., Францева Н.Н. Преподавание химии по новым инновационным технологиям / В сборнике: Совершенствование учебного процесса в высшей школе на основе инновационных методов обучения Сборник научных трудов по материалам научно-методической конференции. 2012. С. 91-92.

Шипуля А.Н., Безгина Ю.А., Волосова Е.В., Пашкова Е.В. Физическая и коллоидная химия: рабочая тетрадь / ФГБОУ ВО «Ставропольский государственный аграрный университет». Ставрополь, 2016.

Брыкалов А.В., Романенко Е.С., Некольченко Л.Н., Кривошеев Н.В., Шипуля А.Н., Горохова С.Г., Плющ Е.В., Гудиев О.Ю. Вопросы совершенствования организации самостоятельной работы студентов по химическим дисциплинам / В сборнике: Информационные и коммуникационные технологии и их роль в активизации учебного процесса в вузе 66-67 научно-практическая конференция. 2004. С. 24-26.

Шипуля А.Н., Безгина Ю.А., Волосова Е.В., Пашкова Е.В. Химия : рабочая тетрадь / Ставрополь, 2015.

Источник

Чем полезен азот для организма

Введение. Оксид азота (II) – молекула года, а также вещество, за исследование физиологических и биохимических свойств которого была присуждена Нобелевская премия на исходе прошедшего тысячелетия

Цель работы – расширить базовые представления об оксиде азота, при этом объясняя возросший интерес к данной молекуле в лице мирового научного сообщества.

История изучения биологических свойств окиси азота отсчитывается с середины 20 века и продолжается по сей день. В этот продолжительный период было сделано много важных открытий в изучении механизмов различных жизненно важных процессов человеческого организма, которые протекают с непосредственным участием NO:

• 1955 г. – Роберт Форчготт обнаружил расслабляющее действие света на аорту кролика;

• 1965 г. – А.Ф. Ванин опубликовал в журнале «Биофизика» статью «Свободные радикалы нового типа в дрожжевых клетках»;

• 1970-е гг. – Ферид Мьюрэд экспериментально подтвердил влияние NO на активацию гуанилатциклазы;

• 1980 – 1991 гг. – Р. Форшготт и параллельно с ним Луис Игнарро публикуют серию статей про EDRF (Endothelium-Derived Relaxing Factor);

• 1998 г. – Р. Форчготт, Ф. Мьюрэд и Л. Игнарро стали лауреатами Нобелевской премии по физиологии или медицине за открытие роли оксида азота как сигнальной молекулы в сердечно-сосудистой системе.

Оксид азота (NO) – в нормальных условиях бесцветный газ, плохо растворимый в воде, однако хорошо растворимый в органических средах. Вследствие наличия в его электронной структуре неспаренного электрона относится к разряду радикалов (нитроксил-анион). Данный факт объясняет крайне непродолжительный срок существования молекулы в соответствующем состоянии.

Учитывая крайне высокую реакционную способность окиси азота, организму необходимо ее синтезировать и впоследствии хранить в нужных количествах на определенных этапах метаболизма.

Для синтеза эндогенного оксида азота в каждой клетке нашего организма предусмотрен ген, в результате активации которого происходит выработка фермента NO–синтазы. Данный фермент катализирует реакцию превращения аминокислоты L–аргинин в цитруллин с выделением молекулы NO.

Выделившись в результате описанной реакции, окись азота либо сразу же направляется на нужды организма, либо хранится до востребования последним в форме динитрозильного комплекса с железом (Fe+2). Подобные комплексы (сокращенно ДНКЖ) имеют важное биологическое значение: они не только стабилизируют никтроксил-анион, но и способствуют его транспорту от места образования до места действия.

Оксид азота – нейромедиатор.

Физико-химические свойства оксида азота (II) детерминируют его участие в механизме передачи импульсов по нервным волокнам. Нитроксил-анион – это универсальный трансмиттер химических синапсов.

Для большинства нейромедиаторов существует ряд ограничений: они передают импульс только в одном направлении (от пре- к постсинаптическому нейрону) посредством трансмембранных клеточных рецепторов соответственно всего двух нейроцитов, формирующих синапс. В то же время NO способен передавать сигнал не только в пределах лишь одного синапса, но и между целой группой близко расположенных нервных клеток, при этом осуществляя обмен информацией в обе стороны без участия рецепторов.

Такой вариант передачи возбуждения между клетками имеет определенный ряд преимуществ. Исключается необходимость существования в клетках механизмов специфического энзиматического расщепления (например нейромедиатор ацетилхолин расщепляется холинэстаразой), а также механизмов специфического обратного захвата для прекращения потерявшего актуальность сигнала (прошедшего синаптическую щель химического трансмиттера). Будучи высокореакционной частицей, молекула NO вступает в реакции с другими радикалами организменной среды, что в итоге приводит к неспецифическому прекращению его действия как медиатора.

Вазодилататорный эффект NO.

Endothelium-Derived Relaxing Factor (EDRF) – на русский язык дословно переводится как эндотелий-производный расслабляющий фактор, являющийся очередным эквивалентным названием оксида азота (II). Данная аббревиатура довольно четко и понятно описывает функциональное назначение NO в процессе вазодилатации (расширения) кровеносных сосудов нашего организма.

Ацетилхолин (АЦХ) – основной нейромедиатор парасимпатической нервной системы. При воздейтсвии АЦХ на сосуды из эндотелия последних высвобождается NO, который впоследствии стимулирует расслабление гладкомышечного слоя тех же сосудов.

Оксид азота очень важен для нормального функционирования человеческого организма. Многие его условно патологические состояния невозможно разрешить без участия NO. При физической нагрузке организму требуется большее количество кислорода, что в случае недостаточного усвоения может привести к гипоксии. Чтобы избежать длительного кислородного голодания активируется процесс бронходилатации (увеличение просвета воздухоносных путей в легких), вследствие чего усиливается газообмен между окружающей средой и организмом человека.

Читайте также:  Чем покрасить пельменное тесто

Естественное состояние при активном потреблении пищи и жидкости – увеличение объема желудка вследствие расслабления мышц его фундального отдела. Данный эффект также достигается при непосредственном участии NO.

Нитроглицерин – широко известный своим лекарственным действием нитроэфир. Стенокардия (возникает из-за недостаточного кислородного снабжения сердечной мышцы), кишечная колика (спазм гладкой мускулатуры кишечника), повышенный тонус матки и прочие патологические состояния нашего организма могут быть устранены применением данного вещества. Дело все в том, что при разрушении данной молекулы возможно образование окиси азота хорошо известной своим вазодилататорный эффектом и, как следствие, спазмолитическим действием на ткани организма. Поэтому при острых состояниях, сопровождающих многие заболевания внутренних органов человека, вполне может быть применен препарат, содержащий нитроглицерин, для устранения подобной болезненной симптоматики.

Участие в иммунном ответе.

Оксид азота (II) является условным цитотоксическим фактором, который вырабатывается макрофагами и некоторыми другими клетками иммунной системы с целью оказания повреждающего эффекта на клетки бактерий, грибов, простейших, а также на различные злокачественные образования макроорганизма хозяина. В основе данного процесса лежит реакция взаимодействия NO с супероксидом (O2−). В результате образуется высокотоксичный окислитель пероксинитрит (ONOO−), который уже непосредственно взаимодействует со структурными (белки) и генетическими (ДНК) компонентами инфекционных агентов, тем самым нейтрализуя их патогенный потенциал.

Самыми известными для широкой общественности антимикробными препаратами (АМП) являются препараты из группы нитроимидазолов (метронидазол и другие). Принцип действия препарата метронидазола следующий: в процессе метаболизма соответствующего соединения в клетке анаэробных микробов образуется нитроксил-анион (NO), оказывающий описанный ранее повреждающий эффект. В случае же более поздних эволюционных представителей (аэробов) подобной картины при приеме нитроимидазолов не наблюдается, поскольку образующийся в них NO сразу же окисляется с образованием относительно безвредных нитратов.

Стоит так же отметить, что при резком увеличении концентрации оксида азота (II) в результате различных иммунных реакций или при активно развивающихся инфекционных болезнях (сепсис, пневмония и др.) возможна следующая клиническая картина: в результате чрезмерной вазодилатации наблюдается резкое падение АД, что чревато коллапсом и гипоксией жизненно важных органов – печени, мозга, сердца и т.д. Таким образом излишняя продукция NO может оказывать отрицательное воздействие как на региональный воспалительный процесс (наблюдается чрезмерная интенсивность воспаления), так и на весь организм в целом.

Источник

Чем полезен азот для организма

pdf 50

В свободном состоянии монооксид азота (NO) – это бесцветный газ без запаха, обладающий высокой реакционной способностью. Его молекулярная масса составляет 30,01 г/моль, растворимость в воде – 74 см3/дм3, показатель преломления – 1,0002697, температура плавления – 163,6 °С, температура кипения – 151,7 °С [5].

Основным природным источником NO являются электрические разряды молний в грозу. При сгорании топлива примерно 90% оксидов азота превращается в NO, а оставшиеся 10% – в диоксид азота [20]. В ходе химических реакций значительная часть монооксида азота превращается в N2O. Это бесцветный газ со сладковатым вкусом, большие количества которого приводят к притуплению болевой чувствительности и потере сознания, благодаря чему в смеси с кислородом (80% N2О+20% О2) он иногда применяется для наркоза.

Профессор доктор биологических наук А.Ф. Ванин в 1965 году обнаружил в биологических объектах с помощью электронного парамагнитного резонанса радикалы неизвестной природы, показав их гипотензивное действие. В 1985 г. он получил данные, что открытые радикалы имеют отношение к окиси азота [16].

В 1980 году фармаколог из Университета штата Нью-Йорк Р. Фарчготт в эксперименте показал, что ацетилхолин расширяет кровеносные сосуды в тех случаях, когда стенка сосудов не повреждена. Р. Фарчготт пришел к выводу, что неповрежденные эндотелиальные клетки продуцируют сигнал, расслабляющий гладкую мускулатуру сосудов. Этот сигнал молекулы был назван EDRF (эндотелиум-получательно-распределяющий фактор).

Независимо от Р. Фарчготта в поисках неизвестной сигнальной молекулы принимал участие доктор Л. Игнарро из Калифорнийского университета в Лос-Анджелесе. В 1986 году Л. Игнарро заключил, что EDRF идентичен окиси азота.

В 1977 году врач-фармаколог Ф. Мюрад из Медицинской школы Техасского университета в Хьюстоне установил, что нитроглицерин и другие родственные сосудорасширяющие вещества освобождают окись азота, которая расширяет гладкую мускулатуру клеток.

В июле 1986 года Р. Фарчготт и Л. Игнарро получили аналогичные данные. Это вызвало лавину исследований в различных лабораториях во всем мире. 10 декабря 1998 г. в Стокгольме (Швеция) трем ученым из США: Р. Ферчготту, Л. Игнарро и Ф. Мюраду, была присуждена Нобелевская премия по физиологии и медицине за открытие роли оксида азота как сигнальной молекулы в сердечно-сосудистой системе [12].

Синтез монооксида азота в организме

2L-аргинин + 3НАДФН + 4O2 + 3H+ → 2L-цитруллин + 2NO + 3НАДФ+ + 4H2O

В зависимости от структуры и локализации различают следующие изоформы NO-синтаз (NOS): эндотелиальные (eNOS), нейрональные (nNOS) и макрофагальные (mNOS). Активность nNOS имеет максимальное значение около 300 нмоль/мг/мин, mNOS – до 1000 нмоль/мг/мин, eNOS – около 15 нмоль/мг/мин. Молекула nNOS (161 kDa) состоит из 1434 аминокислотных остатков, mNOS (131 kDa) – 1153, eNOS (133 kDa) –1203. nNOS и mNOS содержатся, главным образом, в цитоплазме клетки, eNOS связана с клеточными мембранами [9; 22; 23]. В активный центр NOS входит железопорфириновый комплекс, содержащий цистеин или метионин. В синтез монооксида азота посредством NO-синтаз включаются шесть кофакторов: никотинамидадениндинуклеотидфосфат (НАДФ-Н), флавинадениндинуклеотид (ФАД), флавинмононуклеотид (ФМН), тетрагидробиоптерин, гем и кальмодулин.

Изоформы NOS отличаются по механизму действия и биологическому значению для организма. Поэтому их подразделяют на конститутивную (cNOS) и индуцибельную (iNOS). Нейрональная NOS является только конститутивной, mNOS –индуцибельной формой, eNOS в 80% является конститутивной и в 20% – индуцибельной ферментативной формой (табл. 1).

Активность cNOS зависит от концентрации Са2+ и кальмодулина. Механизм действия eNOS и nNOS имеет сходный характер. Под влиянием вазодилятаторных агентов (ацетилхолина, аденозина, 5-оксиптриптамина, глутамата, брадикинина, гистамина и других) в цитозоле эндотелиальных клеток возрастает уровень Са2+, который соединяется с кальмодулином. Комплекс Ca-кальмодулин выступает как кофактор, активирующий NOS. Под влиянием ингредиентной NOS образуются малые количества NO, который осуществляет местную регуляцию. Он диффундирует к прилегающим гладким мышцам, вызывая последовательную активацию гуанилатциклазы, протеинкиназы G, протеинфосфатазы. В результате дефосфорилируется одна из субъединиц К+ мембранного канала, приводя к усилению калиевой проводимости через плазматическую мембрану миоцитов. Вследствие конформационных изменений, вызванных гиперполяризацией мембраны, снижается проницаемость кальциевых каналов и падает уровень свободного Са2 + в клетках. Это вызывает расслабление миофибрилл и является причиной снижения тонуса кровеносных сосудов [ 13; 22; 24; 26; 32].

Читайте также:  Чем лечить желудочно кишечный тракт при болях

Сравнительная характеристика NOS [1]

Нейроны, эпителиоциты, эндотелиоциты, миоциты скелетных мышц и сосудов, нейтрофилы, тромбоциты, f3-клетки поджелудочной железы

Макрофаги, нейтрофилы, эпителиоциты, кардиомиоциты, глиальные клетки, миоциты сосудов, эндотелиоциты, нейроны

Эндотелиоциты, кардиомиоциты, тромбоциты, нейроны

Основные регуляторные механизмы

Цитоплазма, эндоплазматический ретикулум, сарколемма

Фагосомы, пероксисомы, мембрана, ядро клетки, митохондрии

Аппарат Гольджи, мембрана клетки в области маленьких инвагинаций, которые содержат трансмембранный кавеолин, ядро клетки, митохондрии

Активация сNOS наблюдается при гипоксических состояниях организма, при вазоконстрикции сосудов, под влиянием фактора активации тромбоцитов (ФАТ) через ФАТ-рецепторы на клетках эндотелия [2; 6; 12]. Монооксид азота, продуцируемый под влиянием nNOS и eNOS, при некоторых формах патологии, наряду с регуляторным, оказывает и протективное действие [10; 11; 21].

iNOS появляется в клетках (макрофагах, нейтрофилах, кератиноцитах, фибробластах, хондроцитах, остеокластах) только после индукции их бактериальными эндотоксинами и некоторыми медиаторами воспаления (гамма-интерфероном, ИЛ-1, ИЛ-2, фактором некроза опухоли), активными формами кислорода, а также гормонами, которые воздействуют на синтез циклического аденозинмонофосфата (адреналин, глюкагон). iNOS участвует в реакциях неспецифического иммунитета [12; 15; 18; 20-23; 26].

Физиологическая роль и механизмы действия NO

Все многообразие физиологических эффектов NO можно разделить на 3 типа:

• повреждающее действие [17; 19].

Центральная и периферическая нервная система. Наиболее хорошо изучена роль NO в нервной системе, где окись азота активирует процесс выброса нейромедиаторов из нервных окончаний во время синаптической передачи. Более того, молекула NO сама может играть роль нейромедиатора [4; 12; 20; 21; 22; 26].

nNOS регулирует рост и дифференцировку клеток ЦНС и, предположительно, их восстановление после локальных ишемических повреждений головного мозга [11; 12; 17]. В ишемизированном участке мозга глутаматергические нейроны вместо физиологической порции нейротрансмиттера выделяют поток глутамата, который обрушивается на NO-синтезирующие нейроны, – происходит так называемый глутаматный каскад. В результате повышается поступление Ca2+ в клетку и, как следствие, возрастает синтез и выделение из нейрона NO [23]. Ингибиторы синтеза оксида азота (нитроаргинин, гемоглобин) защищают нейроны, снижая их гибель на 73% [4; 7; 26].

NO участвует в процессах долговременной синаптической потенциации, связанной с образованием памяти. Таким образом, в мыслительной деятельности окись азота является и непосредственным участником, и косвенным регулятором [11; 15; 23].

Сердечно-сосудистая система. NO поддерживает вазодилатацию, регулирует кровоток и контролирует базальное артериальное давление [7; 12; 16]. Окисленные липопротеины низкой плотности (ЛПНП) подавляют синтез оксида азота в тромбоцитах, стимулируют их агрегацию, образование тромбоксана А2 и серотонина, способствуя дисфункции эндотелия и нарушению структуры сосудов, ведущих к развитию атеросклероза [11; 12].

В случае инфаркта миокарда оксид азота стимулирует ангиогенез [12]. NO способствует синтезу эндотелиального фактора роста, тормозит пролиферацию и миграцию гладкомышечных клеток [11], гипертрофию сосудов [1], подавляет синтез внеклеточного матрикса, поддерживая всем этим нормальную структуру сосудистой стенки.

В различных отделах почки представлены все три изоформы NOS. Оксид азота активно участвует в её физиологических процессах: регулирует почечную гемодинамику, гломерулярную фильтрацию, ингибирует транспорт Na+ и увеличивает его экскрецию.

NO играет важную роль в регуляции функций легких и в патофизиологии заболеваний системы дыхания. Активные радикалы азота увеличивают продукцию муцина и эпителиальной слизи, ускоряют движения ресничек реснитчатого эпителия, индуцируют активность апикальных анионных и базолатеральных калиевых каналов эпителиоцитов, способствуя механической элиминации инфекционных агентов.

При цилиарной дискинезии, муковисцидозе, дефиците α1-антитрипсина, легочной артериальной гипертензии наблюдается снижение содержания NO в выдыхаемом воздухе [1].

Иммунонейроэндокринная система. Установлена важная роль оксида азота в регуляции иммунонейроэндокринной системы [8; 9; 15]. Запуск стресс-реакции происходит за счет активации гипоталамо-гипофизарно-надпочечниковой и симпатоадреналовой систем [27]. Торможение активности nNOS способствует увеличению концентрации вазопрессина и окситоцина [29]. NO ингибирует активацию гипоталамо-гипофизарно-надпочечниковой системы, вызываемую вазопрессином, обладая стресслимитирующим действием [9; 13; 15; 29].

Аксоны NO-ергических нейронов надпочечников контактируют с хромаффинными клетками, продуцирующими катехоламины. Выделение оксида азота происходит одновременно с норадреналином. В небольших концентрациях NO угнетает высвобождение катехоламинов из надпочечников и симпатических нервных окончаний, приводя к ограничению стресс-реакции [28].

Оксид азота выполняет функцию медиатора воспаления. Каждая фаза асептического воспаления ассоциирована с определенными изоформами NOS. На ранней фазе воспалительной реакции под действием медиаторов (гистамина, брадикинина, простагландинов и лейкотриенов) [30] происходит стимуляция продукции оксида азота с помощью nNOS. Параллельно усиливается активность еNOS. В клетках сосудистого эндотелия NO активирует растворимую гуанилатциклазу, что приводит к усиленному образованию цГМФ, который вызывает релаксацию гладкомышечных клеток сосудов, увеличивая сосудистую проницаемость [17]. сNOS и iNOS имеют отношение к продукции оксида азота в ранней фазе воспаления.

В развитие поздней фазы воспаления вносит вклад только оксид азота, продуцируемый с помощью iNOS, локализованной в лейкоцитах. На этой стадии воспалительного процесса NO стимулирует синтез и высвобождение провоспалительных цитокинов – ИЛ-1, ИЛ-2, ИЛ-3, ИЛ-6, лейкотриенов, хемокинов, которые, в свою очередь, стимулируют миграцию лейкоцитов в очаг воспаления. NOS контролирует биосинтез ИЛ-4, ИЛ-10, ИЛ-11 и ИЛ-13, которые относятся к противовоспалительным цитокинам [17; 30].

Действие высоких и низких концентраций оксида азота

Действие оксида азота опосредовано его концентрацией (рисунок). Малые физиологические концентрации NO (

Источник

Adblock
detector