Чем оперируют в вероятностном имитационном моделировании

Имитационное моделирование

40px Wiki letter w.svg

Имитационное моделирование (ситуационное моделирование) — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Имитационное моделирование — это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование — это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационная модель — логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Содержание

Применение имитационного моделирования

К имитационному моделированию прибегают, когда :

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами — разработке симулятора (англ. simulation modeling ) исследуемой предметной области для проведения различных экспериментов.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950-х — 1960-х годах.

Источник

Имитационное моделирование

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

Имитационное моделирование является мощным инструментом исследования поведения реальных систем. Методы имитационного моделирования позволяют собрать необходимую информацию о поведении системы путем создания ее компьютерной модели. Эта информация используется затем для проектирования системы.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами в предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны.

К имитационному моделированию прибегают, когда:

1. Дорого или невозможно экспериментировать на реальном объекте.

2. Невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные.

3. Необходимо сымитировать поведение системы во времени.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950х — 1960х годах.

Можно выделить две разновидности имитации:

1. Метод Монте-Карло (метод статистических испытаний);

2. Метод имитационного моделирования (статистическое моделирование).

В настоящее время выделяют три направления имитационных моделей:

1. Агентное моделирование — относительно новое (1990е-2000е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот. Когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы.

Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. Агент — некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

2. Дискретно-событийное моделирование — подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений — от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов.

3. Системная динамика — парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии.

Читайте также:  Чем питается лемур в природе

image021

Основные понятия построения модели

Имитационное моделирование основано на воспроизведении с помощью компьютеров развернутого во времени процесса функционирования системы с учетом взаимодействия с внешней средой.

Основой всякой имитационной модели (ИМ) является:

· разработка модели исследуемой системы на основе частных имитационных моделей (модулей) подсистем, объединенных своими взаимодействиями в единое целое;

· выбор информативных (интегративных) характеристик объекта, способов их получения и анализа;

640 1

· построение модели воздействия внешней среды на систему в виде совокупности имитационных моделей внешних воздействующих факторов;

· выбор способа исследования имитационной модели в соответствии с методами планирования имитационных экспериментов (ИЭ).

Условно имитационную модель можно представить в виде действующих, программно (или аппаратно) реализованных блоков.

На рисунке показана структура имитационной модели. Блок имитации внешних воздействий (БИВВ) формирует реализации случайных или детерминированных процессов, имитирующих воздействия внешней среды на объект. Блок обработки результатов (БОР) предназначен для получения информативных характеристик исследуемого объекта. Необходимая для этого информация поступает из блока математической модели объекта (БМО). Блок управления (БУИМ) реализует способ исследования имитационной модели, основное его назначение – автоматизация процесса проведения ИЭ.

image022

Целью имитационного моделирования является конструирование ИМ объекта и проведение ИЭ над ней для изучения закономерностей функционирования и поведения с учетом заданных ограничений и целевых функций в условиях имитации и взаимодействия с внешней средой.

Принципы и методы построения имитационных моделей

Процесс функционирования сложной системы можно рассматривать как смену ее состояний, описываемых ее фазовыми переменными

Z1(t), Z2(t), Zn(t) в n – мерном пространстве.

Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n – мерном пространстве (Z1, Z2, Zn), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства.

В данном случае “движение” системы понимается в общем смысле – как любое изменение, происходящее в ней.

Известны два принципа построения модели процесса функционирования систем:

1. Принцип Δt для детерминированных систем

Предположим, что начальное состояние системы соответствует значениям Z1(t0), Z2(t0), Zn(t0). Принцип Δt предполагает преобразование модели системы к такому виду, чтобы значения Z1, Z2, Zn в момент времени t1 = t0 + Δt можно было вычислить через начальные значения, а в момент t2 = t1+ Δt через значения на предшествующем шаге и так для каждого i-ого шага ( t = const, i = 1 M).

Для систем, где случайность является определяющим фактором, принцип Δt заключается в следующем:

2. Вычисляются значения координат точки траектории движения системы (t1 = t0+ Δt), как значения координат случайного вектора, заданного распределением, найденным на предыдущем шаге.

3. Отыскиваются условное распределение вектора на втором шаге (t2 = t1 + Δ t), при условии получения соответствующих значений на первом шаге и т.д., пока ti = t0 + i Δ t не примет значения (tМ = t0 + М Δ t).

Принцип Δ t является универсальным, применим для широкого класса систем. Его недостатком является неэкономичность с точки зрения затрат машинного времени.

2. Принцип особых состояний (принцип δz).

При рассмотрении некоторых видов систем можно выделить два вида состояний δz:

1. Обычное, в котором система находится большую часть времени, при этом Zi(t), (i=1 n) изменяются плавно;

2. Особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком.

Принцип особых состояний отличается от принципа Δt тем, что шаги по времени в этом случае не постоянны, является величиной случайной и вычисляется в соответствии с информацией о предыдущем особом состоянии.

Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д.

Читайте также:  Чем кормить щенка американского булли

Основные методы имитационного моделирования.

Основными методами имитационного моделирования являются: аналитический метод, метод статического моделирования и комбинированный метод (аналитико-статистический) метод.

Аналитический метод применяется для имитации процессов в основном для малых и простых систем, где отсутствует фактор случайности. Метод назван условно, так как он объединяет возможности имитации процесса, модель которого получена в виде аналитически замкнутого решения, или решения полученного методами вычислительной математики.

Метод статистического моделирования первоначально развивался как метод статистических испытаний (Монте-Карло). Это – численный метод, состоящий в получении оценок вероятностных характеристик, совпадающих с решением аналитических задач (например, с решением уравнений и вычислением определенного интеграла). В последствии этот метод стал применяться для имитации процессов, происходящих в системах, внутри которых есть источник случайности или которые подвержены случайным воздействиям. Он получил название метода статистического моделирования.

Комбинированный метод (аналитико-статистический) позволяет объединить достоинства аналитического и статистического методов моделирования. Он применяется в случае разработки модели, состоящей из различных модулей, представляющих набор как статистических так и аналитических моделей, которые взаимодействуют как единое целое. Причем в набор модулей могут входить не только модули соответствующие динамическим моделям, но и модули соответствующие статическим математическим моделям.

Вопросы для самопроверки

1. Определить, что такое оптимизационная математическую модель.

2. Для чего могут использоваться оптимизационные модели?

3. Определить особенности имитационного моделирования.

4. Дать характеристику метода статистического моделирования.

5. Что есть модель типа «черный ящик», модель состава, структуры, модель типа «белый ящик»?

Источник

Компьютерное имитационное моделирование. Статистическое имитационное моделирование

Компьютерное моделирование как новый метод научных исследований основывается на:

Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течение заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

Под алгоритмизацией функционирования РПС понимается пооперационное описание работы всех ее функциональных подсистем отдельных модулей с уровнем детализации, соответствующем комплексу требований к модели.

Основное достоинство ИМ:

Эти достоинства обеспечивают имитационному методу широкое распространение.

Рекомендуется использовать имитационное моделирование в следующих случаях:

Однако ИМ наряду с достоинствами имеет и недостатки:

И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название » метод статистических испытаний » или » метод Монте-Карло «.

Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.

Методика статистического моделирования состоит из следующих этапов:

Обобщенный алгоритм метода статистических испытаний представлен на рис. 5.1.

Источник

Имитационное моделирование: создание терминов

История создания терминов

image loader

При создании методики по имитационному моделированию мне понадобилось разобраться с терминами. Проблема была в том, что общепринятые термины не годились для описания статистических данных, собранных в процессе имитации. Термины: процесс и экземпляры процесса были неприемлемы, потому что я не мог работать в парадигме Аристотеля. Парадигма Аристотеля не стыкуется с примененным мной матаппаратом. При этом практическое применение данной методики было простое – моделирование и имитация бизнес-объектов с целью принятия управленческих решений. В программе создавался виртуальный объект, описание которого состояло из описания сценариев и их взаимодействия. Сценарии прогонялись внутри программы, а также моделировались ресурсы и их взаимодействия.

Читайте также:  Очаги фиброза в матке что

Напомню, что:

Имитационное моделирование — метод исследования объектов, основанный на том, что изучаемый объект заменяется имитирующим объектом. С имитирующим объектом проводят эксперименты (не прибегая к экспериментам на реальном объекте) и в результате получают информацию об изучаемом объекте. Имитирующий объект при этом являет из себя информационный объект.

Цель имитационного моделирования — получение приближенных знаний о некотором параметре объекта, не производя непосредственное измерение его значений. Понятно, что это необходимо тогда и только тогда, когда измерение невозможно, или оно стоит дороже проведения имитации. При этом для изучения этого параметра мы можем пользоваться другими известными параметрами объекта и моделью его конструкции. Допуская, что модель конструкции достаточно точно описывает объект, предполагается, что полученные в ходе имитации статистические распределения значений параметра моделирующего объекта будут в той или иной степени совпадать с распределением значений параметра реального объекта.

Понятно, что матаппарат, который был применен, — это статистическая математика. Понятно, что матстатистика не использует термины экземпляры и типы. Она работает с объектами и множествами. В итоге для написания методики я был вынужден был использовать логическую парадигму на основе которой создан стандарт ИСО 15926. Основой его является наличие объектов, классов и классов классов.

Я хочу поделиться некоторыми определениями, которые мне пришлось ввести для объяснения механизмов моделирования и анализа результатов имитации. Этих примеров будет достаточно, чтобы понять, с чем я имел дело, когда строил модель предметной области.

Примеры определений:

Операция

Событие

Источник

Компьютерное имитационное моделирование. Статистическое имитационное моделирование

Компьютерное моделирование как новый метод научных исследований основывается на:

Реальные процессы и системы можно исследовать с помощью двух типов математических моделей: аналитических и имитационных.

Имитационное моделирование представляет собой численный метод проведения на ЭВМ вычислительных экспериментов с математическими моделями, имитирующими поведение реальных объектов, процессов и систем во времени в течение заданного периода. При этом функционирование РПС разбивается на элементарные явления, подсистемы и модули. Функционирование этих элементарных явлений, подсистем и модулей описывается набором алгоритмов, которые имитируют элементарные явления с сохранением их логической структуры и последовательности протекания во времени.

Под алгоритмизацией функционирования РПС понимается пооперационное описание работы всех ее функциональных подсистем отдельных модулей с уровнем детализации, соответствующем комплексу требований к модели.

Основное достоинство ИМ:

Эти достоинства обеспечивают имитационному методу широкое распространение.

Рекомендуется использовать имитационное моделирование в следующих случаях:

Однако ИМ наряду с достоинствами имеет и недостатки:

И тем не менее ИМ является одним из наиболее широко используемых методов при решении задач синтеза и анализа сложных процессов и систем.

В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.

При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название » метод статистических испытаний » или » метод Монте-Карло «.

Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.

Методика статистического моделирования состоит из следующих этапов:

Обобщенный алгоритм метода статистических испытаний представлен на рис. 5.1.

Источник

Adblock
detector